有理数的定义
http://www.newdu.com 2025/07/04 02:07:01 中考网 佚名 参加讨论
包含有理数分类的原则和方法,相反数、数轴、绝对值的概念和特点。 1.有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数 。“分类”的原则:(1)相称(不重、不漏);(2)有标准 2.非负数:正数与零的统称。 3.相反数: (1)定义:如果两个数的和为0.那么这两个数互为相反数. (2)求相反数的公式: a的相反数为-a. (3)性质:①a≠0时,a≠-a;②a与-a在数轴上的位置关于原点对称;③两个相反数的和为0,商为-1。 4.数轴: (1)定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴。 作用:①直观地比较实数的大小;②明确体现绝对值意义;③所有的有理数可以在数轴上表示出来,所有的无理数如 都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。 5.绝对值:(1)代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。 (2)几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 ①符号"││”是“非负数”的标志; ②数a的绝对值只有一个; ③处理任何类型的题目,只要其中有"││”出现,其关键一步是去掉"││”符号。 新初三快扫码关注 中考网微信公众号 每日推送学习技巧,学科知识点 助你迎接2020年中考! ![]() (责任编辑:admin) |
- 上一篇:初一数学上册知识点:有理数
- 下一篇:有理数的乘方