三角函数所有求导公式大全
http://www.newdu.com 2025/12/09 04:12:17 初三网 admin 参加讨论
导数也叫导函数值,导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来分享三角函数所有求导公式。 ![]() 所有三角函数的求导公式 正弦函数:(sinx)'=cosx 余弦函数:(cosx)'=-sinx 正切函数:(tanx)'=sec²x 余切函数:(cotx)'=-csc²x 正割函数:(secx)'=tanx·secx 余割函数:(cscx)'=-cotx·cscx 反正弦函数:(arcsinx)'=1/√(1-x^2) 反余弦函数:(arccosx)'=-1/√(1-x^2) 反正切函数:(arctanx)'=1/(1+x^2) 反余切函数:(arccotx)'=-1/(1+x^2) 其他函数求导公式 常函数:y=c(c为常数) y'=0 幂函数:y=xn y'=nx^(n-1) 指数函数:①y=ax y'=axlna ②y=ex y'=ex 对数函数:①y=logax y'=1/xlna ②y=lnx y'=1/x 常用导数的记忆口诀 常为零,幂降次。 对倒数(e为底时直接倒数,a为底时乘以1/lna)。 指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna)。 正变余,余变正。 切割方(切函数是相应割函数(切函数的倒数)的平方)。 割乘切,反分式。 (责任编辑:admin) |
- 上一篇:二次函数顶点坐标公式
- 下一篇:小学数学必背公式大全
