三角函数的导数公式
http://www.newdu.com 2025/12/09 04:12:17 初三网 admin 参加讨论
初中数学三角函数的导数公式有哪些?下面是小编整理的内容,供大家参考。 ![]() 常用三角函数的导数公式大全 1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)−sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.积化和差公式 sin(a)sin(b)=-12⋅[cos(a+b)-cos(a-b)] cos(a)cos(b)=12⋅[cos(a+b)+cos(a-b)] sin(a)cos(b)=12⋅[sin(a+b)+sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式 a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c)其中tan(c)=ba a⋅sin(a)-b⋅cos(a)=a2+b2cos(a-c)其中tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))2 1-sin(a)=(sin(a2)-cos(a2))2 csc(a)=1sin(a) sec(a)=1cos(a) 函数的基本求导法则 1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。 2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。 3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。 4、如果有复合函数,则用链式法则求导。 (1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。 (2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。 (责任编辑:admin) |
- 上一篇:三角函数倍角公式总结
- 下一篇:三角函数正切公式有哪些
