三角形中位线定理和逆定理
http://www.newdu.com 2025/09/11 08:09:51 初三网 admin 参加讨论
三角形中位线定理是三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。下面整理了三角形中位线定理和逆定理,供大家参考。 ![]() 三角形中位线定理 三角形中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。 证明:已知△ABC中,D,E分别是AB,AC两边中点。求证DE平行于BC且等于BC/2 过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立 逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC ∴DE和DE'重合(过直线外一点,有且只有一条直线与已知直线平行) ∴E是中点,DE=BC/2 注意:在三角形内部,经过一边中点,且等于第三边一半的线段不一定是三角形的中位线。 (责任编辑:admin) |
- 上一篇:角平分线比例定理
- 下一篇:三角形全等的判定定理是什么