勾股定理逆定理证明方法
http://www.newdu.com 2025/09/11 04:09:08 初三网 admin 参加讨论
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。接下来分享勾股定理逆定理证明方法。 ![]() 勾股定理逆定理证明方法 1.根据余弦定理,在△ABC中,cosC=(a²+b²-c²)÷2ab。由于a²+b²=c²,故cosC=0;因为0°<∠C<180°,所以∠C=90°。(证明完毕) 2.已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形 证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c' 在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’² 一∵a²+b²=c²,∴c‘=c 在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C' ∴∠C=∠C'=90° 勾股定理的逆定理 勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△abc是钝角三角形。 勾股定理的公式 基本公式 在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a2+b2=c2。 完全公式 a=m,b=(m^2/k-k)/2,c=(m^2/k+k)/2① 其中m≥3 (1)当m确定为任意一个≥3的奇数时,k={1,m^2的所有小于m的因子} (2)当m确定为任意一个≥4的偶数时,k={m^2/2的所有小于m的偶数因子} (责任编辑:admin) |
- 上一篇:初中数学三角形内角和定理
- 下一篇:平行四边形判定定理及面积公式