2019年中考数学复习资料:三角形全等判定(4)
http://www.newdu.com 2025/09/12 02:09:46 网络 佚名 参加讨论
中考网整理了《2019中考数学复习资料:三角形全等判定》,供同学们参考。 三角形全等的判定(综合探究) 教学内容 本节课主要内容是三角形全等的判定的综合运用. 教学目标 1.知识与技能 理解三角形全等的判定,并会运用它们解决实际问题. 2.过程与方法 经历探索三角形全等的四种判定方法的过程,能进行合情推理. 3.情感、态度与价值观 培养良好的几何思维,体会几何学的应用价值. 重、难点与关键 1.重点:运用四个判定三角形全等的方法. 2.难点:正确选择判定三角形全等的方法,充分应用“综合法”进行表达. 3.关键:把握问题的因果关系,从中寻找思路. 教具准备 投影仪、幻灯片、直尺、圆规. 教学方法 采用“讲.练”结合的教学法,让学生充分体会到几何的分析思想. 教学过程 一、分层练习,回顾反思 【课堂演练】 1.已知△ABC≌△A′B′C′,且∠A=48°,∠B=33°,A′B′=5cm,求∠C′的度数与AB的长. 【教师活动】操作投影仪,组织学生练习,请一位学生上台演示. 【学生活动】先独立完成演练1,然后再与同伴交流,踊跃上台演示. 解:在△ABC中,∠A+∠B+∠C=180° ∴∠C=180°-(∠A+∠B)=99° ∵△ABC≌△A′B′C′,∠C=∠C′, ∴∠C′=99°, ∴AB=A′B′=5cm. 【评析】表示两个全等三角形时,要把对应顶点的字母写在对应位置上,这时解题就很方便. 2.已知:如图1,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,连接AO,∠1=∠2. 求证:∠B=∠C. 【思路点拨】要证两个角相等,我们通常用的办法有:(1)两直线平行,同位角或内错角相等;(2)全等三角形对应角相等;(3)等腰三角形两底角相等(待学). 根据本题的图形,应考虑去证明三角形全等,由已知条件,可知AD=AE,∠1=∠2,AO是公共边,叫△ADO≌△AEO,则可得到OD=OE,∠AEO=∠ADO,∠EOA=∠DOA,而要证∠B=∠C可以进一步考查△OBE≌△OCD,而由上可知OE=OD,∠BOE=∠COD(对顶角),∠BEO=∠CDO(等角的补角相等),则可证得△OBF≌△OCD,事实上,得到∠AEO=∠AOD之后,又有∠BOE=∠COD,由外角的关系,可得出∠B=∠C,这样更进一步简化了思路. 【教师活动】操作投影仪,巡视、启发引导,关注“学困生”,请学生上台演示,然后评点. 【学生活动】小组合作交流,共同探讨,然后解答. 【媒体使用】投影显示演练题2. 【教学形式】分组合作,互相交流. 【教师点评】在分析一道题目的条件时,尽量把条件分析透,如上题当证明△ADO≌△AEO之后,可以得到OD=OE,∠AEO=∠ADO,∠EOA=∠DOA,这些结论虽然在进一步证明中并不一定都用到,但在分析时对图形中的等量及大小关系有了正确认识,有利于进一步思考. 证明 在△AEO与△ADO中, AE=AD,∠2=∠1,AO=AO, ∴△AEO≌△ADO(SAS),∴∠AEO=∠ADO. 又∵∠AEO=∠EOB+∠B,∠AOD=∠DOC+∠C. 又∵∠EOB=∠DOC(对应角),∴∠B=∠C. (责任编辑:admin) |