中考网-中考真题答案下载-中考试题库-中考成绩查询-知识点学习方法与技巧补课解题技巧学习计划表总结-中考查分网-中考网-中考资源网-中学学科网

首页 > 中考数学 > 知识点总结 > 三角形 >

2019年中考数学复习资料:三角形全等判定(3)


    中考网整理了《2019中考数学复习资料:三角形全等判定》,供同学们参考。
    三角形全等判定(ASA、AAS)
    教学内容
    本节课主要内容是探索三角形全等的判定(ASA,AAS),及利用全等三角形的证明.
    教学目标
    1.知识与技能
    理解“角边角”、“角角边”判定三角形全等的方法.
    2.过程与方法
    经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.
    3.情感、态度与价值观
    培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值.
    重、难点与关键
    1.重点:应用“角边角”、“角角边”判定三角形全等.
    2.难点:学会综合法解决几何推理问题.
    3.关键:把握综合分析法的思想,寻找问题的切入点.
    教具准备
    投影仪、幻灯片、直尺、圆规.
    教学方法
    采用“问题教学法”在情境问题中,激发学生的求知欲.
    教学过程
    一、回顾交流,巩固学习
    【知识回顾】(投影显示)
    情境思考:
    1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.
    (1) (2)
    [答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]
    2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=DE(SSS)或∠BAC=∠DAE(SAS)].
    3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.
    【教师活动】操作投影仪,提出问题,组织学生思考和提问.
    【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.
    【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.
    二、实践操作,导入课题
    【动手动脑】(投影显示)
    问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,放到△ABC上,它们全等吗?
    【学生活动】动手操作,感知问题的规律,画图如下:
    画一个△A′B′C′,使A′B′=AB, ∠A′=∠A,∠B′=∠B: 1. 画A′B′=AB; 2. 在A′B′的同旁画∠DA′B′=∠A, ∠EBA′=∠B,A′D,B′E交于点C′。
    探究规律:两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).
    【知识铺垫】课本图11.2─8中,∠A′=∠A,∠B′=∠B,那么∠C=∠A′C′B′吗?为什么?
    【学生回答】根据三角形内角和定理,∠C′=180°-∠A′-∠B′,∠C=180°-∠A-∠B,由于∠A=∠A′,∠B=∠B′,∴∠C=∠C′.
    【教师提问】在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF(课本图11.2─9),△ABC与△DEF全等吗?
    【学生活动】运用三角形内角和定理,以及“ASA”很快证出△ABC≌△EFD,并且归纳如下:
    归纳规律:两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS).
    三、范例点击,应用所学
    【例3】如课本图11.2─10,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.
    【教师活动】引导学生,分析例3.关键是寻找到和已知条件有关的△ACD和△ABE,再证它们全等,从而得出AD=AE.
    证明:在△ACD与△ABE中,
    ∴△ACD≌△ABE(ASA)
    ∴AD=AE
    【学生活动】参与教师分析,领会推理方法.
    【媒体使用】投影显示例3.
    【教学形式】师生互动.
    【教师提问】三角对应相等的两个三角形全等吗?
    【学生活动】与同伴交流,得到有三角对应相等的两个三角形不一定会全等,拿出三角板进行说明,如图3,下面这块三角形的内外边形成的△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,但是它们不全等.(形状相同,大小不等).
    四、随堂练习,巩固深化
    课本P13练习第1,2题.
    五、课堂总结,发展潜能
    1.证明两个三角形全等有几种方法?如何正确选择和应用这些方法?
    2.全等三角形性质可以用来证明哪些问题?举例说明.
    3.你在本节课的探究过程中,有什么感想?
    六、布置作业,专题突破
    1.课本P15习题11.2第5,6,9,10题.
    2.选用课时作业设计.
    板书设计
    把黑板分成三部分,左边部分板书“角边角”、“角角边”判定法,中间部分板书例题、画图,右边部分板书练习.
     (责任编辑:admin)