2019年中考数学复习资料:三角形全等判定(1)
http://www.newdu.com 2025/12/08 09:12:51 网络 佚名 参加讨论
中考网整理了《2019中考数学复习资料:三角形全等判定》,供同学们参考。 三边对应相等的两个三角形全等(简写成“边边边”或“SSS”). 两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”). 两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”). 两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS). 斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”). 角的平分线上的点到角的两边的距离相等.(性质定理) 到角的两边的距离相等的点在角的平分线上.(判定定理) 教学内容 本节课主要内容是探索三角形全等的条件(SSS),及利用全等三角形进行证明. 教学目标 1.知识与技能 了解三角形的稳定性,会应用“边边边”判定两个三角形全等. 2.过程与方法 经历探索“边边边”判定全等三角形的过程,解决简单的问题. 3.情感、态度与价值观 培养有条理的思考和表达能力,形成良好的合作意识. 重、难点与关键 1.重点:掌握“边边边”判定两个三角形全等的方法. 2.难点:理解证明的基本过程,学会综合分析法. 3.关键:掌握图形特征,寻找适合条件的两个三角形. 教具准备 一块形状如图1所示的硬纸片,直尺,圆规. (1) (2) 教学方法 采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象. 教学过程 一、设疑求解,操作感知 【教师活动】(出示教具) 问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流. 【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,剪下模板就可去割玻璃了. 【理论认知】 如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.反之,如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′. 这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等. 信不信? 【作图验证】(用直尺和圆规) 先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗) 【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示) 画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC: 1.画线段取B′C′=BC; 2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′; 3.连接线段A′B′、A′C′. 【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?” 【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理. (1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”). (2)判断两个三角形全等的推理过程,叫做证明三角形全等. 【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验. 二、范例点击,应用所学 【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.(教师板书) 【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等. 证明:∵D是BC的中点, ∴BD=CD 在△ABD和△ACD中 ∴△ABD≌△ACD(SSS). 【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写. (责任编辑:admin) |