中考网-中考真题答案下载-中考试题库-中考成绩查询-知识点学习方法与技巧补课解题技巧学习计划表总结-中考查分网-中考网-中考资源网-中学学科网

首页 > 中考数学 > 综合辅导 >

初中二次函数知识点归纳总结


    初中二次函数知识点归纳总结:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c。
    I.定义与定义表达式
    一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
    (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
    二次函数表达式的右边通常为二次三项式。
    II.二次函数的三种表达式
    一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
    顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
    交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和     B(x₂,0)的抛物线]
    注:在3种形式的互相转化中,有如下关系:
    h=-b/2a   k=(4ac-b^2)/4a   x₁,x₂=(-b±√b^2-4ac)/2a
    III.二次函数的图像
    在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
    IV.抛物线的性质
    1.抛物线是轴对称图形。对称轴为直线    x = -b/2a。
    对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
    2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
    3.二次项系数a决定抛物线的开口方向和大小。
    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
    4.一次项系数b和二次项系数a共同决定对称轴的位置。
    当a与b同号时(即ab>0),对称轴在y轴左;
    当a与b异号时(即ab<0),对称轴在y轴右。
    5.常数项c决定抛物线与y轴交点。
    抛物线与y轴交于(0,c)
    6.抛物线与x轴交点个数
    Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
    Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
    Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
     (责任编辑:admin)