中考网-中考真题答案下载-中考试题库-中考成绩查询-知识点学习方法与技巧补课解题技巧学习计划表总结-中考查分网-中考网-中考资源网-中学学科网

首页 > 中考数学 > 函数 >

2023年初中数学知识点总结 二次函数


    一、定义与定义表达式
    一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
    (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
    二次函数表达式的右边通常为二次三项式。
    二、二次函数的三种表达式
    一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
    顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
    交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]
    注:在3种形式的互相转化中,有如下关系:
    h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a
    三、二次函数的图像
    在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
    四、抛物线的性质
    1、抛物线是轴对称图形。对称轴为直线 x = -b/2a。
    对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
    2、抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
    3、二次项系数a决定抛物线的开口方向和大小。
    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
    4、一次项系数b和二次项系数a共同决定对称轴的位置。
    当a与b同号时(即ab>0),对称轴在y轴左;
    当a与b异号时(即ab<0),对称轴在y轴右。
    5、常数项c决定抛物线与y轴交点。
    抛物线与y轴交于(0,c)
    6、抛物线与x轴交点个数
    Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
    Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
    Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
    五、二次函数与一元二次方程
    特别地,二次函数(以下称函数)y=ax^2+bx+c,
    当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
    此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
    1、二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
    


    当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
    当h<0时,则向左平行移动|h|个单位得到.
    当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;
    当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
    当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
    当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
    因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
    2、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
    3.、抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
    4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:
    (1)图象与y轴一定相交,交点坐标为(0,c);
    (2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
    (a≠0)的两根.这两点间的距离AB=|x₂-x₁|
    当△=0.图象与x轴只有一个交点;
    当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
    5、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
    顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
    6、用待定系数法求二次函数的解析式
    (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
    y=ax^2+bx+c(a≠0).
    (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
    (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).
    7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
     (责任编辑:admin)