中考网-中考真题答案下载-中考试题库-中考成绩查询-知识点学习方法与技巧补课解题技巧学习计划表总结-中考查分网-中考网-中考资源网-中学学科网

首页 > 中考数学 > 知识点总结 > 三角函数 >

三角函数公式推导过程(2)


    =3sinα-4sin^3(α)
    cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
    =(2cos^2(α)-1)cosα-2cosαsin^2(α)
    =2cos^3(α)-cosα+(2cosα-2cos^3(α))
    =4cos^3(α)-3cosα
    即
    sin3α=3sinα-4sin^3(α)
    cos3α=4cos^3(α)-3cosα
    和差化积公式推导
    首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
    我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
    所以,sina*cosb=(sin(a+b)+sin(a-b))/2
    同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
    同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
    所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
    所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
    同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
     (责任编辑:admin)