三角函数的降幂公式总结
http://www.newdu.com 2025/12/09 01:12:51 初三网 admin 参加讨论
三角函数中的降幂公式可降低三角函数指数幂。下面总结了三角函数的降幂公式,希望能帮助到大家。 ![]() 三角函数降幂公式定义 三角函数中的降幂公式可降低三角函数指数幂。多项式各项的先后按照某一个字母的指数逐渐减少的顺序排列,叫做这一字母的降幂。直接运用二倍角公式就是升幂,将公式Cos2α变形后可得到降幂公式。 三角函数降幂公式 三角函数的降幂公式是:cos²α = (1+ cos2α) / 2 sin²α=(1-cos2α) / 2 tan²α=(1-cos2α)/(1+cos2α) 运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式: cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α ∴cos²α=(1+cos2α)/2 sin²α=(1-cos2α)/2 降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。 二倍角公式: sin2α=2sinαcosα cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α tan2α=2tanα/(1-tan²α) 三角函数关系 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) (责任编辑:admin) |
- 上一篇:初中数学勾股定理常用公式
- 下一篇:cscx等于什么 三角函数公式整理
