知识考点: 1、掌握两圆的内外公切线长的性质和求切线长的方法(转化为解直角三角形)。 2、掌握有关两圆的内、外公切线的基本图形,以及这类问题添加辅助线的方法,会结合圆的切线的性质解决有关两圆公切线的问题。 精典例题: 【例1】如图,⊙O1与⊙O2外切于P,AB是两圆的外公切线,切点为A、B,我们称△PAB为切点三角形,切点三角形具有许多性质,现总结如下: (1)△PAB是直角三角形,并且∠APB=900; (2)△PAB的外接圆与连心线O1O2相切; (3)以O1O2为直径的圆与Rt△PAB的斜边AB相切; (4)斜边AB是两圆直径的比例中项; (5)若⊙O1、⊙O2的半径为、,则PA∶PB∶AB=∶∶; (6)内公切线PC平分斜边AB; (7)△CO1O2为直角三角形。 这些结论虽然在证题时仍需证明,但有了这些基本结论作基础,可帮助你迅速找到解题思路,可以提高解题速度,下面用一个具体的例子来说明。
|