易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。 易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。 易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。 易错点6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。 易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。 易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。 三角形 易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。 易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。 易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。 易错点4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。 易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。 易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。 易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。 易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。 易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。 易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。 易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。 四边形 易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。三角形的稳定性与四边形不稳定性。 易错点2:平行四边形注意与三角形面积求法的区分。平行四边形与特殊平行四边形之间的转化关系。 易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。对角线将四边形分成面积相等的四部分。 易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。 (责任编辑:admin) |