新一轮中考复习备考周期正式开始, 直线与圆的位置关系判定方法: 平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程 如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。 如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。 2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2。 令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么: 当x=-C/A<x1或x=-C/A>x2时,直线与圆相离; 当x1<x=-C/A<x2时,直线与圆相交。 (责任编辑:admin) |