中考网-中考真题答案、学习方法、解题技巧、知识点、学习计划、复习资料!

中考网-中考真题答案下载-中考试题库-中考成绩查询-知识点学习方法与技巧补课解题技巧学习计划表总结-中考查分网-中考网-中考资源网-中学学科网

2015年中考数学二次函数知识点:例题分析二

http://www.newdu.com 2018-11-25 中考网 佚名 参加讨论

    二、例题分析:
    例2.直线 y=-x与双曲线y=-的两个交点都在抛物线y=ax2+bx+c上,若抛物线顶点到y轴的距离为2,求此抛物线的解析式。
    分析:两函数图象交点的求法就是将两函数的解析式联立成方程组,方程组的解既为交点坐标。
    解:∵直线y=-x与双曲线y=-的交点都在抛物线y=ax2+bx+c上,
    由  解这个方程组,得x=±1.
    ∴当x=1时,y=-1.
    当x=-1时,y=1.
    经检验:都是原方程的解。
    设两交点为A、B,∴A(1,-1),B(-1,1)。
    又∵抛物线顶点到y轴的距离为2,∴ 抛物线的对称轴为直线x=2或x=-2,
    当对称轴为直线x=2时,
    设所求的抛物线解析式为y=a(x-2)2+k,又∵过A(1,-1),B(-1,1),
    ∴ 解方程组得
    ∴ 抛物线的解析式为y=(x-2)2-
    即 y=x2-x-.
    当对称轴为直线x=-2时,设所求抛物线解析式为y=a(x+2)2+k,
    则有 解方程组得,
    ∴ 抛物线解析式为y=-(x+2)2+
    y=-x2-x+.
    ∴所求抛物线解析式为:y=x2-x-或y=-x2-x+。
    说明:在求直线和双曲线的交点时,需列出方程组,通过解方程组求出x, y值,双曲线的解析式为分式方程,所以所求x, y值需检验。抛物线顶点到y轴距离为2,所以对称轴可在y轴左侧或右侧,所以要分类讨论,求出抛物线的两个解析式。
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
中考语文
中考数学
中考英语
中考物理
中考化学
中考政治
中考历史
中考地理
中考生物
历史与社会
备考经验