新一轮中考复习备考周期正式开始, 分式约分与通分: 1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分; 分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。 约分的方法和步骤包括: (1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积; (2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。 2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。 分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。 (1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积; (2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母; (3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等; (4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。 注意: (1)分式的约分和通分都是依据分式的基本性质; (2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。 (3)约分时,分子与分母不是乘积形式,不能约分. 3.求最简公分母的方法是: (1)将各个分母分解因式; (2)找各分母系数的最小公倍数; (3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。 (责任编辑:admin) |