☆☆☆ 点击下载试题 ☆☆☆ 此试题可能存在乱码情况,在查看时请点击右上角全屏查看 2018年桂林中考数学模拟试题 (全卷满分120分,考试时间120分钟) 注意事项: 1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效; 2. 答题前,请认真阅读答题卷上的注意事项; 3. 考试结束后,将本试卷和答题卷一并交回. 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B铅笔涂黑) 1. 2 sin 60°的值等于 A. 1 B. ![]() ![]() ![]() 2. 下列的几何图形中,一定是轴对称图形的有 ![]() A. 5个 B. 4个 C. 3个 D. 2个 3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为 A. 1.8×10 B. 1.8×108 C. 1.8×109 D. 1.8×1010 4. 估计 ![]() A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是 ![]() ![]() 类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名 C. 400名 D. 300名 8. 用配方法解一元二次方程x2 + 4x – 5 = 0,此方程可变形为 A. (x + 2)2 = 9 B. (x - 2)2 = 9 C. (x + 2)2 = 1 D. (x - 2)2 =1 ![]() 9. 如图,在△ABC中,AD,BE是两条中线,则S△EDC∶S△ABC = A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶3 10. 下列各因式分解正确的是 A. x2 + 2x -1=(x - 1)2 B. - x2 +(-2)2 =(x - 2)(x + 2) C. x3- 4x = x(x + 2)(x - 2) D. (x + 1)2 = x2 + 2x + 1 ![]() ∠BED = 120°,则图中阴影部分的面积之和为 A. ![]() ![]() ![]() 12. 如图,△ABC中,∠C = 90°,M是AB的中点,动点P从点A 出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿 CB方向匀速运动到终点B. 已知P,Q两点同时出发,并同时 到达终点,连接MP,MQ,PQ . 在整个运动过程中,△MPQ ![]() A. 一直增大 B. 一直减小 C. 先减小后增大 D. 先增大后减小 二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│- ![]() 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 . 16. 在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m,则根据题意可得方程 . ![]() 再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把 △ABC经过连续9次这样的变换得到△A′B′C′,则点A的对 应点A′ 的坐标是 . 18. 如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜 边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的 斜边AD为直角边,画第三个等腰Rt△ADE ……依此类推直 到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成 的图形的面积为 . ![]() 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效) 19. (本小题满分8分,每题4分) ![]() ![]() ![]() (2)化简:(1 - ![]() ![]() 20. (本小题满分6分) ![]() ![]() 21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°. (1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图 痕迹,不要求写作法); (2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数. ![]() (1)求这50个样本数据的平均数、众数和中位数; (2)根据样本数据,估算该校1200名学生共参加了多少次活动. ![]() 部B点到山脚C点的距离BC为6 ![]() 为30°. 小宁在山脚的平地F处测量这棵树的高,点 C到测角仪EF的水平距离CF = 1米,从E处测得树 顶部A的仰角为45°,树底部B的仰角为20°,求树 ![]() (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) ![]() OM∥AP,MN⊥AP,垂足为N. (1)求证:OM = AN; (2)若⊙O的半径R = 3,PA = 9,求OM的长. 25. (本小题满分10分)某中学计划购买A型和B型课桌凳共200套. 经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元. (1)求购买一套A型课桌凳和一套B型课桌凳各需多少元? (2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的 ![]() 26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为(-1,0). 如图所示,B点在抛物线y = ![]() ![]() (1)求证:△BDC ≌ △COA; ![]() (3)抛物线的对称轴上是否存在点P,使△ACP是 以AC为直角边的直角三角形?若存在,求出 所有点P的坐标;若不存在,请说明理由. 2018年桂林中考数学模拟试题参考答案 一、选择题
说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P,Q分别位于A、C两点时,S△MPQ = ![]() ![]() ![]() ![]() ![]() ![]() 二、填空题 13. ![]() ![]() ![]() ![]() ![]() 17. (16,1+ ![]() ![]() 三、解答题 19. (1)解:原式 = 4× ![]() ![]() = 0 …………………………………4分 (2)解:原式 =( ![]() ![]() ![]() = ![]() ![]() = m – n …………4分 20. 解:由①得3(1 + x)- 2(x-1)≤6, …………1分 化简得x≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x<4. …………5分 ∴原不等式组的解是x≤1. …………6分 ![]() (2)∵BD平分∠ABC,∠ABC = 72°, ∴∠ABD = ![]() ∵AB = AC,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°, ∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 ![]() ![]() ∴这组样本数据的平均数是3.3. …………2分 ∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分 ∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有 ![]() ∴这组数据的中位数是3. ………………6分 (2)∵这组数据的平均数是3.3, ∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt△BDC中,∠BDC = 90°,BC = 6 ![]() ![]() ∠BCD = 30°, ∴DC = BC·cos30° ……………………1分 = 6 ![]() ![]() ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt△BGE中,∠BEG = 20°, ∴BG = CG·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt△AGE中,∠AEG = 45°, ∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4. 答:树AB的高度约为6.4米. ……………8分 24. 解(1)如图,连接OA,则OA⊥AP. ………………1分 ![]() ∵MN⊥AP,∴MN∥OA. ………………2分 ∵OM∥AP,∴四边形ANMO是矩形. ∴OM = AN. ………………3分 (2)连接OB,则OB⊥AP, ∵OA = MN,OA = OB,OM∥BP, ∴OB = MN,∠OMB =∠NPM. ∴Rt△OBM≌Rt△MNP. ………………5分 ∴OM = MP. 设OM = x,则NP = 9- x. ………………6分 在Rt△MNP中,有x2 = 32+(9- x)2. ∴x = 5. 即OM = 5 …………… 8分 25. 解:(1)设A型每套x元,则B型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分 ∴x = 180,x + 40 = 220. 即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分 (2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套. ![]() ![]() ∴ …………… 4分 180 a + 220(200- a)≤40880. 解得78≤a≤80. …………… 5分 ∵a为整数,∴a = 78,79,80 ∴共有3种方案. ………………6分 设购买课桌凳总费用为y元,则 y = 180a + 220(200 - a)=-40a + 44000. …………… 7分 ∵-40<0,y随a的增大而减小, ∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是: 购买A型80套,购买B型120套. ………………10分 (责任编辑:admin) |