数学的函数是比较重要的部分,下面小编就大家整理一下初三数学二次函数重点知识点整理,仅供参考。 1二次函数定义 定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。 1二次函数的图像与性质 1二次函数的图像是一条抛物线。 2抛物线是轴对称图形。对称轴为直线x=-b/2a。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。 3二次项系数a决定抛物线的开口方向。 当a>0时,抛物线向上开口; 当a<0时,抛物线向下开口。 4一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5抛物线与x轴交点个数 Δ=b^2-4ac>0时,抛物线与x轴有2个交点; Δ=b^2-4ac=0时,抛物线与x轴有1个交点; Δ=b^2-4ac<0时,抛物线与x轴没有交点。 1二次函数的三种表达式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0); 顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k)); 1反比例函数性质 1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限。 2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大。 k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。 定义域为x≠0;值域为y≠0。 3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。 (责任编辑:admin) |