初中数学的知识点很多,小编给大家总结归纳了初中数学的重要知识点,希望对同学们复习有帮助。 ![]() 全等三角形 1.经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。 2.三角形全等的判定 (1)SSS(边边边) 三边对应相等的三角形是全等三角形。 (2)SAS(边角边) 两边及其夹角对应相等的三角形是全等三角形。 (3)ASA(角边角) 两角及其夹边对应相等的三角形全等。 (4)AAS(角角边) 两角及其一角的对边对应相等的三角形全等。 (5)RHS(直角、斜边、边) 在一对直角三角形中,斜边及另一条直角边相等。 3.角平分线 (1)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。 (2)性质 ①角平分线分得的两个角相等,都等于该角的一半。 ②角平分线上的点到角的两边的距离相等。 有理数 1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 2.相反数:指绝对值相等,正负号相反的两个数互为相反数。 3.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。 4.有理数的加减法:同号相加,把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 5.有理数的乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。 6.有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不为0的数,都得0。 整式 1.整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。 2.整式的乘法 (1)同底数幂的乘法 同底数幂相乘,底数不变,指数相加。 (2)幂的乘方 幂的乘方,底数不变,指数相乘。 (3)积的乘方 积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。 3.因式分解 (1)待定系数法 ①确定所求问题含待定系数的一般解析式; ②根据恒等条件,列出一组含待定系数的方程; ③解方程或消去待定系数,从而使问题得到解决。 (2)十字相乘法 ①把二次项系数和常数项分别分解因数; ②尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数; ③确定合适的十字图并写出因式分解的结果; ④检验。 圆 1.圆的对称性 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2.垂径定理 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5.夹在平行线间的两条弧相等。 (1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角三角形的外心就是斜边的中点。) 6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。 三角形的知识点 1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。 三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。 2.三角形中的三条重要线段:角平分线、中线、高 (1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 (2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。 (责任编辑:admin) |