很多同学都需要整理数学知识点,小编整理了一些初二的数学知识点,大家一起来看看吧。 ![]() 三角形知识点 1、全等三角形的对应边、对应角相等。 2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。 3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。 4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。 5、边边边公理(SSS)有三边对应相等的两个三角形全等。 6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。 7、定理1在角的平分线上的点到这个角的两边的距离相等。 8、定理2到一个角的两边的距离相同的点,在这个角的平分线上。 9、角的平分线是到角的两边距离相等的所有点的集合。 10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。 函数与方程知识点 1、一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。 2、任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线y=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。 3、利用函数图像解方程:-2x+2=0,可以转化为求一次函数y=-2x+2与x轴交点的横坐标。而y=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。 注意:解一元一次方程ax+b=0(a≠0)与求函数y=ax+b(a≠0)的图像与x轴交点的横坐标是同一个问题。不同的是前者从数的角度来解决问题,后者从形的角度来解决问题。 4、每个二元一次方程组都对应两个一次函数,从数的角度来看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数是何值;从形的角度来看,解方程组相当于确定两条直线交点的坐标,从而使方程组得出答案。 5、解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。还有一个描点法。一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。通常情况下y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。 数据的分析 1、平均数 ①一般地,对于n个数x1x2...xn,我们把(x1+x2+...+xn)叫做这n个数的算数平均数,简称平均数记为。 ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。 2、中位数与众数 ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。 ②一组数据中出现次数最多的那个数据叫做这组数据的众数。 ③平均数、中位数和众数都是描述数据集中趋势的统计量。 ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。 ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。 ⑥各个数据重复次数大致相等时,众数往往没有特别意义。 3、从统计图分析数据的集中趋势。 4、数据的离散程度 ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。 ②数学上,数据的离散程度还可以用方差或标准差刻画。 ③方差是各个数据与平均数差的平方的平均数。 ④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。 ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。 以上就是一些数学知识点的总结,供大家参考。 (责任编辑:admin) |