1三角函数的导数公式 正弦函数:(sinx)'=cosx 余弦函数:(cosx)'=-sinx 正切函数:(tanx)'=sec²x 余切函数:(cotx)'=-csc²x 正割函数:(secx)'=tanx·secx 余割函数:(cscx)'=-cotx·cscx 2反三角函数的导数公式 反正弦函数:(arcsinx)'=1/√(1-x^2) 反余弦函数:(arccosx)'=-1/√(1-x^2) 反正切函数:(arctanx)'=1/(1+x^2) 反余切函数:(arccotx)'=-1/(1+x^2) 3其他函数导数公式 常函数:y=c(c为常数) y'=0 幂函数:y=xn y'=nx^(n-1) 指数函数:①y=ax y'=axlna ②y=ex y'=ex 对数函数:①y=logax y'=1/xlna ②y=lnx y'=1/x 4什么是导数 设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。 (责任编辑:admin) |