1因式分解常用公式 1、平方差公式:a²-b²=(a+b)(a-b)。 2、完全平方公式:a²+2ab+b²=(a+b)²。 3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。 4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。 5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。 6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。 7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。 8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。 2三角函数的诱导公式 诱导公式一:终边相同的角的同一三角函数的值相等 设α为任意锐角,弧度制下的角的表示: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 诱导公式二:π+α的三角函数值与α的三角函数值之间的关系 设α为任意角,弧度制下的角的表示: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 诱导公式三:任意角α与-α的三角函数值之间的关系 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 诱导公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系 sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系 sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα 3乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 4三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a| 5图形面积公式 直棱柱侧面积:S=c*h 斜棱柱侧面积:S=c'*h 正棱锥侧面积:S=1/2c*h' 正棱台侧面积:S=1/2(c+c')h' 圆台侧面积:S=1/2(c+c')l=pi(R+r)l 球的表面积:S=4pi*r2 圆柱侧面积:S=c*h=2pi*h 圆锥侧面积:S=1/2*c*l=pi*r*l 弧长公式:l=a*r.a是圆心角的弧度数r>0 扇形面积公式:s=1/2*l*r 锥体体积公式:V=1/3*S*H 圆锥体体积公式:V=1/3*pi*r2h 斜棱柱体积:V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式:V=s*h;圆柱体V=pi*r2h (责任编辑:admin) |