把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。下面就和小编一起了解一下,供大家参考。 ![]() 初中数学因式分解的分解步骤整理 ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解 ④分解因式,必须进行到每一个多项式因式都不能再分解为止。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。” 分解因式的技巧有什么 ①分解因式是多项式的恒等变形,要求等式左边必须是多项式 ②分解因式的结果必须是以乘积的形式表示 ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数 ④分解因式必须分解到每个多项式因式都不能再分解为止。 因式分解速记口诀 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积2倍坐中央。 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 初中数学因式分解常见方法 1.提公因式法:ma+mb+mc=m(a+b+c) 2.平方差公式:a^2-b^2=(a+b)(a-b) 3.运用公式法:a^2-b^2=(a+b)(a-b);a^2+2ab+b^2=(a+b)^2;a^2-2ab+b^2=(a-b)^2 4.完全平方公式:a^2+2ab+b^2=(a+b)^2;a^2-2ab+b^2=(a-b)^2 5.分组分解法:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b) (责任编辑:admin) |