多边形的外角和公式
http://www.newdu.com 2025/09/12 07:09:58 初三网 admin 参加讨论
多边形所有外角的和叫做多边形的外角和。任意凸多边形的外角和都为360°。多边形内角和公式为(n-2)×180°。 ![]() 与多边形的内角相对应的是外角,多边形的外角就是将其中一条边延长并与另一条边相夹的那个角。任意凸多边形的外角和都为360°。多边形所有外角的和叫做多边形的外角和。 证明:根据多边形的内角和公式求外角和为360。 n边形内角之和为(n-2)*180,设n边形的内角为∠1、∠2、∠3、...、∠n,对应的外角度数为:180-∠1、180°-∠2、180°-∠3、...、180°-∠n,外角之和为: (180-∠1)+(180°-∠2)+(180°-∠3)+...+(180°-∠n) =n*180°-(∠1+∠2+∠3+...+∠n) =n*180°-(n-2)*180° =360° (责任编辑:admin) |