4。系数与指数 区别与联系:①从位置上看;②从表示的意义上看 5。同类项及其合并 条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 6。根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。 7。算术平方根 ⑴正数a的正的平方根([a≥0—与“平方根”的区别]); ⑵算术平方根与绝对值 ①联系:都是非负数,=│a│ ②区别:│a│中,a为一切实数;中,a为非负数。 8。同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 9。指数 ⑴(—幂,乘方运算) ①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数) ⑵零指数:=1(a≠0) 负整指数:=1/(a≠0,p是正整数) 二、运算定律、性质、法则 1。分式的加、减、乘、除、乘方、开方法则 2。分式的性质 ⑴基本性质:=(m≠0) ⑵符号法则: ⑶繁分式:①定义;②化简方法(两种) 3。整式运算法则(去括号、添括号法则) 4。幂的运算性质:①·=;②÷=;③=;④=;⑤ 技巧: 5。乘法法则:⑴单×单;⑵单×多;⑶多×多。 6。乘法公式:(正、逆用) (a+b)(a-b)= (a±b)= 7。除法法则:⑴单÷单;⑵多÷单。 8。因式分解:⑴定义;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分组分解法;E。求根公式法。 9。算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用) 10。根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C.。 11。科学记数法:(1≤a<10,n是整数= 三、应用举例(略) 四、数式综合运算(略) 第三章统计初步 ★重点★ ☆内容提要☆ 一、重要概念 1。总体:考察对象的全体。 2。个体:总体中每一个考察对象。 3。样本:从总体中抽出的一部分个体。 4。样本容量:样本中个体的数目。 5。众数:一组数据中,出现次数最多的数据。 6。中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、计算方法 1。样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。 2。样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。 3。样本标准差: 三、应用举例(略) (责任编辑:admin) |