知识考点: 掌握三角形、梯形的中位线定理,并会用它们进行有关的论证和计算。 精典例题: 【例1】如图,梯形ABCD中,AD∥BC,M是腰AB的中点,且AD+BC=DC。求证:MD⊥MC。 分析:遇到腰上中点的问题构造梯形中位线可证明,也可以因为腰上有中点,延长DM与CB的延长线交于E点进行证明。 【例2】如图,△ABC的三边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,求PM的长。 分析:∠A的平分线与BP边上的垂线互相重合,通过作辅助线延长BP交AC于点Q,由△ABP≌△AQP知AB=AQ=14,又知M是BC的中点,所以PM是△BQC的中位线,于是本题得以解决。 答案:PM=6 探索与创新: 【问题一】E、F为凸四边形ABCD的一组对边AD、BC的中点,若EF=,问:ABCD为什么四边形?请说明理由。 请下载附件: 点击下载 (责任编辑:admin) |