14 特殊点的坐标特征: 坐标平面点(x,y),横在前来纵在后; (+,+),(-,+),(-,-)和(+,-),四个象限分前后; x轴上y为0,x为0在y轴. 象限角的平分线: 象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反. 平行某轴的直线: 平行某轴的直线,点的坐标有讲究, 直线平行x轴,纵坐标相等横不同; 直线平行于y轴,点的横坐标仍照旧. 15 对称点的坐标: 对称点坐标要记牢,相反数位置莫混淆, x轴对称y相反,y轴对称x相反; 原点对称最好记,横纵坐标全变号. 16 自变量的取值范围: 分式分母不为零,偶次根下负不行; 零次幂底数不为零,整式、奇次根全能行. 17 函数图象的移动规律: 若把一次函数的解析式写成y=k(x+0)+b, 二次函数的解析式写成y=a(x+h)2+k的形式, 则可用下面的口诀 “左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”. 18 一次函数的图象与性质的口诀: 一次函数是直线,图象经过三象限; 正比例函数更简单,经过原点一直线; 两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见, k为正来右上斜,x增减y增减; k为负来左下展,变化规律正相反; k的绝对值越大,线离横轴就越远. (责任编辑:admin) |