一、选择题 4.(2014年天津市,第12题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论: ①b2﹣4ac>0;②abc<0;③m>2. 其中,正确结论的个数是() A.0B.1C.2D.3 考点:二次函数图象与系数的关系. 分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①; 先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②; 一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可. 解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点, ∴b2﹣4ac>0,故①正确; ②∵抛物线的开口向下, ∴a<0, ∵抛物线与y轴交于正半轴, ∴c>0, ∵对称轴x=﹣>0, ∴ab<0, ∵a<0, ∴b>0, ∴abc<0,故②正确; ③∵一元二次方程ax2+bx+c﹣m=0没有实数根, ∴y=ax2+bx+c和y=m没有交点, 由图可得,m>2,故③正确. 故选D. 点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. (责任编辑:admin) |