一、选择题 4、(2014o威海第11题)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1). 其中正确的个数是() A.1B.2C.3D.4 【考点】:二次函数图象与系数的关系. 【分析】:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 【解答】:解:抛物线与y轴交于原点,c=0,故①正确; 该抛物线的对称轴是:,直线x=﹣1,故②正确; 当x=1时,y=2a+b+c, ∵对称轴是直线x=﹣1, ∴,b=2a, 又∵c=0, ∴y=4a,故③错误; x=m对应的函数值为y=am2+bm+c, x=﹣1对应的函数值为y=a﹣b+c,又x=﹣1时函数取得最小值, ∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm, ∵b=2a, ∴am2+bm+a>0(m≠﹣1).故④正确. 故选:C. 【点评】:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定. (责任编辑:admin) |