121.直线L和O相交d﹤r直线L和O相切d=r直线L和O相离d﹥r 122.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 123.切线的性质定理圆的切线垂直于经过切点的半径 124.推论1:经过圆心且垂直于切线的直线必经过切点 125.推论2:经过切点且垂直于切线的直线必经过圆心 126.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127.圆的外切四边形的两组对边的和相等 128.弦切角定理弦切角等于它所夹的弧对的圆周角 129.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 131.推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133.推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134.如果两个圆相切,那么切点一定在连心线上 135.两圆外离d﹥Rr两圆外切d=Rr两圆相交R-r﹤d﹤Rr(R﹥r) 两圆内切d=R-r(R﹥r)两圆内含d﹤R-r(R﹥r) 136.定理相交两圆的连心线垂直平分两圆的公共弦 137.定理把圆分成n(n≥3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139.正n边形的每个内角都等于(n-2)×180°/n 140.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141.正n边形的面积Sn=pnrn/2p表示正n边形的周长 142.正三角形面积√3a/4a表示边长 143.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144.弧长计算公式:L=n∏R/180 145.扇形面积公式:S扇形=n∏R/360=LR/2 146.内公切线长=d-(R-r)外公切线长=d-(Rr) (责任编辑:admin) |