数学中的十字相乘是很多人都不明白的,下面小编就大家整理一下十字相乘法口诀是什么,仅供参考。 ![]() 1十字相乘法口诀 十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数 具体步骤: 十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数 原理: 运用了乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。 十字相乘法能把二次三项式分解因式(不一定在整数范围内)。 对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式计算步骤: ⑴把二次项系数a分解成两个因数a1,a2的积a1·a2 ⑵把常数项c分解成两个因数c1,c2的积c1·c2 ⑶使a1c2+a2c1正好等于一次项的系数b ⑷结果:ax²+bx+c=(a1x+c1)(a2x+c2) 实质:二项式乘法的逆过程。 当首项系数不是1时,需注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。 1十字相乘顺口溜 竖分常数交叉验, 横写因式不能乱。 1步骤注释 ①竖分二次项与常数项 ②交叉相乘,积相加 ③检验确定,横写因式 1十字相乘法 对于二次三项式的分解因式,借用一个十字叉帮助我们分解因式,这种方法叫做十字相乘法。 【十字相乘法的方法】 十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 【十字相乘法的用处】 (1)用十字相乘法来分解因式。 (2)用十字相乘法来解一元二次方程。 1因式分解的一般步骤 (1) 如果多项式的各项有公因式时,应先提取公因式; (2) 如果多项式的各项没有公因式,则考虑是否能用公式法来分解; (3) 对于二次三项式的因式分解,可考虑用十字相乘法分解; (4) 对于多于三项的多项式,一般应考虑使用分组分解法进行。 在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。 在我们做题时,可以参照下面的口诀: 首先提取公因式,然后考虑用公式; 十字相乘试一试,分组分得要合适; 四种方法反复试,最后须是连乘式。 以上就是初三网整理的十字相乘法口诀是什么,希望能帮助到大家!! (责任编辑:admin) |