小编整理了一些数学常考知识点,大家一起来看看吧。 ![]() 解一元二次方程 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。 1.直接开平方法: 用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m. 直接开平方法就是平方的逆运算.通常用根号表示其运算结果. 2.配方法 通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。 (1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式) (2)系数化1:将二次项系数化为1 (3)移项:将常数项移到等号右侧 (4)配方:等号左右两边同时加上一次项系数一半的平方 (5)变形:将等号左边的代数式写成完全平方形式 (6)开方:左右同时开平方 (7)求解:整理即可得到原方程的根 3、公式法 公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。 角的相关知识点 1.角:角是由两条有公共端点的射线组成的几何对象。 2.角的度量单位:度、分、秒 3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点 4.角的比较: (1)角可以看成是由一条射线绕着他的端点旋转而成的。 (2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。 (3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 5.余角和补角: (1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。 性质:等角的余角相等。 (2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。 性质:等角的补角相等。 因式分解的方法 1.十字相乘法 (1)把二次项系数和常数项分别分解因数; (2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数; (3)确定合适的十字图并写出因式分解的结果; (4)检验。 2.提公因式法 (1)找出公因式; (2)提公因式并确定另一个因式; ①找公因式可按照确定公因式的方法先确定系数再确定字母; ②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 3.待定系数法 (1)确定所求问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决。 以上就是一些数学知识点的相关信息,希望对大家有所帮助。 (责任编辑:admin) |