中考网-中考真题答案、学习方法、解题技巧、知识点、学习计划、复习资料!

中考网-中考真题答案下载-中考试题库-中考成绩查询-知识点学习方法与技巧补课解题技巧学习计划表总结-中考查分网-中考网-中考资源网-中学学科网

当前位置: 首页 > 中考数学 > 综合辅导 >

2021年中考数学知识点之:完全平方公式

http://www.newdu.com 2021-05-17 中考网 佚名 参加讨论

    中考网整理了关于2021年中考数学知识点之:完全平方公式,希望对同学们有所帮助,仅供参考。
    完全平方公式
    教学目标
    1.知识与技能
    会推导完全平方公式,并能运用公式进行简单的运算,形成推理能力.
    2.过程与方法
    利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式.掌握完全平方公式的计算方法.
    3.情感、态度与价值观
    培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.
    重、难点与关键
    1.重点:完全平方公式的推导和应用.
    2.难点:完全平方公式的应用.
    3.关键:从多项式与多项式相乘入手,推导出完全平方公式,利用几何模和割补面积的方法来验证公式的正确性.
    教具准备
    制作边长为a和b的正方形以及长为a宽为b的纸板.
    教学方法
    采用“情境──探究”教学方法,让学生在所创设的情境中领会完全平方公式的内涵.
    教学过程
    一、创设情境,导入新知
    【激趣辅垫】
    寓言故事:请一位学生讲一讲《滥竽充数》的寓言故事.
    【学生活动】由一位学生上讲台讲《滥竽充数》的寓言故事,其他学生补充.
    【教师活动】提出:你们从故事中学到了什么道理?(寓德于教)【学生发言】比喻没有真才实学的人,混在行家里充数,或以次货充好货.
    【教师引导】对!所以我们在以后的学习和工作中,千万别滥竽充数,一定要有真才实学.好.今天同学们喊得很响亮,我要看看有没有南郭先生,请同学们完成下面的几道题:
    (1)(2x-3)2; (2)(x+y)2; (3)(m+2n)2; (4)(2x-4)2.
    【学生活动】先独立完成以上练习,再争取上讲台演练,
    (1)(2x-3)2=4x2-12x+9; (2)(x+y)2=x2+2xy+y2;
    (3)(m+2n)2=m2+4mn+4n2; (4)(2x-4)2=4x2-16x+16.
    【教师活动】组织学生通过上面的运算结果中的每一项,观察、猜测它们的共同特点.
    【学生活动】分四人小组,讨论.观察,探讨,发现规律如下:(1)右边第一项是左边第一项的平方,右边最后一项是左边第二项的平方,中间一项是它们两个乘积的2倍.(2)左边如果为“+”号,右边全是“+”号,左边如果为“-”号,它们两个乘积的2倍就为“-”号,其余都为“+”号.
    【教师提问】那我们就利用简单的(a+b)2与(a-b)2进行验证,请同学们利用多项式乘法以及幂的意义进行计算. 【学生活动】计算出(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2,完成后,一位学生上讲台板演.
    【教师活动】利用学生的板演内容,引出本节课的教学内容──完全平方公式.
    归纳:完全平方公式:
    (a+b)2=a2+2ab+b2;
    (a-b)2=a2-2ab+b2.
    语言叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
    为了让学生直观理解公式,可做下面的拼图游戏.
    【拼图游戏】
    解释:(1)现有图1所示的三种规格的硬纸片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,并探究所拼出的正方形的代数意义.
    (2)你能根据图2,谈一谈(a-b)2=a2-2ab+b2吗?
    【课堂活动】第(1)题由小组合作,在互动中完成拼图游戏,比一比,哪个四人小组快?第(2)题,可以借助多媒体课件,直观地演示面积的变化,帮助学生联想到
    (a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.
    二、范例学习,应用所学
    【例1】运用完全平方公式计算:
    (1)(-x-y)2; (2)(2y-)2
    (1)解法一:(-x-y)2=[(-x)+(-y)] 2
    =(-x)2+2(-x)(-y)+(-y)2
    =x2+2xy+y2;
    解法二:(-x-y)2=[-(x+y)] 2=(x+y)2=x2+2xy+y2.
    (2)解法一:(2y-)2=(2y)2-2·2y·+()2
    =4y2-y+.
    解法二:(2y-)2=[2y+(-)] 2
    =(2y)2+2·2y·(-)+(-)2
    =4y2-y+.
    【例2】运用乘法公式计算99992.
    解:99992=(104-1)2=108-2×104+1
    =100000000-20000+1
    =99980001.三、随堂练习,巩固新知
    【基础训练】
    (1)(-)2; (2)(2xy+3)2;
    (3)(-ab+)2; (4)(7ab+2)2.
    【拓展训练】
    (1)(-2x-3)2; (2)(2x+3)2;
    (3)(2x-3)2; (4)(3-2x)2.
    【教师活动】在学生完成“拓展训练”之后,让学生观察一下结果,看看有什么规律.
    【学生活动】分四人小组合作交流,寻找规律如下:把以上所有的题目都看作两个数的和的完全平方(把减去一个数看作加上一个负数),如果两个数是相同的符号,则结果中的每一项都是正的,如果两个数具有不同的符号,则它们乘积的2倍这一项就是负的.
    【探研时空】
    已知:x+y=-2,xy=3,求x2+y2.
    四、课堂总结,发展潜能
    本节课学习了(a±b)2=a2±2ab+b2,两个乘法公式,在应用时,(1)要了解公式的结构和特征.让住每一个公式左右两边的形式特征,记准指数和系数的符号;(2)掌握公式的几何意义;(3)弄清公式的变化形式;(4)注意公式在应用中的条件;(5)应灵活地应用公式来解题.
    五、布置作业,专题突破
    课本P156习题15.2第3、4、8、9题.
    板书设计
    15.2.2 完全平方公式(一) 1、完全平方公式 例: (a±b)2=a2±2ab+b2
     (责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
中考语文
中考数学
中考英语
中考物理
中考化学
中考政治
中考历史
中考地理
中考生物
历史与社会
备考经验