多边形内角和 已知 已知正多边形内角度数则其边数为:360÷(180-内角度数) 推论 任意多边形的外角和=360 正多边形任意两个相邻角的连线所构成的三角形是等腰三角形 多边形的内角和 定义 〔n-2〕×180· 多边形内角和定理证明 证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形. 因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360° 所以n边形的内角和是n·180°-2×180°=(n-2)·180°. 即n边形的内角和等于(n-2)×180°. 证法二:连结多边形的任一顶点A1与其他各个顶点的线段,把n边形分成(n-2)个三角形. 因为这(n-2)个三角形的内角和都等于(n-2)·180° 所以n边形的内角和是(n-2)×180°. 证法三:在n边形的任意一边上任取一点P,连结P点与其它各顶点的线段可以把n边形分成(n-1)个三角形, 这(n-1)个三角形的内角和等于(n-1)·180° 以P为公共顶点的(n-1)个角的和是180° 所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°. (责任编辑:admin) |