');
(window.slotbydup=window.slotbydup || []).push({
id: '8096091',
container: s,
size: '580,90',
display: 'inlay-fix'
});
})();
能够完全重合的两个三角形叫做全等三角形。(congruent triangles) 全等三角形是相似三角形的特例。 全等三角形的特征: 1.形状,大小完全相同,相似比是k=1。 全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。 因此,相似三角形包括全等三角形。 全等三角形的定义: 能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况) 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 由此,可以得出:全等三角形的对应边相等,对应角相等。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 三角形全等的判定公理及推论: 1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。 2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。 3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。 由3可推到 4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”) 5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。 注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。 SSA中的A不为锐角时可以证明全等 A是英文角的缩写(angle),S是英文边的缩写(side)。 全等三角形的性质: 1、全等三角形的对应角相等、对应边相等。 2、全等三角形的对应边上的高对应相等。 3、全等三角形的对应角平分线相等。 4、全等三角形的对应中线相等。 5、全等三角形面积相等。 6、全等三角形周长相等。 7、三边对应相等的两个三角形全等。(SSS) 8、两边和它们的夹角对应相等的两个三角形全等。(SAS) 9、两角和它们的夹边对应相等的两个三角形全等。(ASA) 10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS) 11、斜边和一条直角边对应相等的两个直角三角形全等。(HL) 全等三角形的运用: 1、性质中三角形全等是条件,结论是对应角、对应边相等。 而全等的判定却刚好相反。 2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。 3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。 4、用在实际中,一般我们用全等三角形测等距离。以及等角,用于工业和军事。有一定帮助。 全等三角形做题技巧: 一般来说考试中线段和角相等需要证明全等。 因此我们可以来采取逆思维的方式。 来想要证全等,则需要什么 另一种则要根据题目中给出的已知条件,求出有关信息。 然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。 位似 概念:相似且对应顶点的连线相交于一点,对应边互相平行的两个图形叫做位似。 位似一定相似但相似不一定位似~ (责任编辑:admin) |