初中数学,让学生头痛的很大一部分就是三角函数!下面小编整理了一些初中三角函数公式,供大家参考! ![]() 1初中三角函数公式有哪些 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin):对边比斜边,即sinA=a/c 余弦(cos):邻边比斜边,即cosA=b/c 正切(tan):对边比邻边,即tanA=a/b 余切(cot):邻边比对边,即cotA=b/a 正割(sec):斜边比邻边,即secA=c/b 余割(csc):斜边比对边,即cscA=c/a 互余角的关系 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 平方关系 sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系 sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系 tanα·cotα=1 sinα·cscα=1 cosα·secα=1如果觉得以上内容不够详细,可以点击查看三角函数相关公式相关文章,了解更多! 1初中三角函数公式推理过程 三角函数积化和差公式推导过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设 α+β=θ,α-β=φ 那么 α=(θ+φ)/2,β=(θ-φ)/2 把α,β的值代入,即得 sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 三角函数差角公式推导过程 首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb 同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2 同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb 同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2 这样,我们就得到了积化和差的公式: cosasinb=[sin(a+b)-sin(a-b)]/2 sinasinb=-[cos(a+b)-cos(a-b)]/2 (责任编辑:admin) |