这篇文章小编给大家总结了初中数学课本的重要内容,希望对同学们学习有帮助。 ![]() 绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 (1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。 (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离。 (3)几个非负数的和等于零则每个非负数都等于零。 注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。 二次根式 1、一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。 2、最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。 3、化二次根式为最简二次根式的方法和步骤: (1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。 (2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。 平面直角坐标系 1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。 2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。 3.原点的坐标是(0,0); 纵坐标相同的点的连线平行于x轴; 横坐标相同的点的连线平行于y轴; x轴上的点的纵坐标为0,表示为(x,0); y轴上的点的横坐标为0,表示为(0,y)。 4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。 5.几个象限内点的特点: 第一象限(+,+);第二象限(—,+); 第三象限(—,—);第四象限(+,—)。 6.(x,y)关于原点对称的点是(—x,—y); (x,y)关于x轴对称的点是(x,—y); (x,y)关于y轴对称的点是(—x,y)。 7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳; 点P(x,y)到y轴的距离是︱x︳。 8.在第一、三象限角平分线上的点的坐标是(m,m); 在第二、四象限叫平分线上的点的坐标是(m,—m)。 三角形 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 8.多边形的内角:多边形相邻两边组成的角叫做它的内角。 9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。 (责任编辑:admin) |