作用:利用圆周角的性质得到直角或直角三角形 3.遇到90度的圆周角时,常常连结两条弦没有公共点的另一端点 作用:利用圆周角的性质,可得到直径 4.遇到弦时,常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点 作用:①可得等腰三角形 ②据圆周角的性质可得相等的圆周角 5.遇到有切线时,常常添加过切点的半径(连结圆心和切点) 作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形 或常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理 6.遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段 作用:若OA=r,则l为切线 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径) 作用:只需证OA⊥l,则l为切线 (3)有遇到圆上或圆外一点作圆的切线 7.遇到两相交切线时(切线长) 常常连结切点和圆心、连结圆心和圆外的一点、连结两切点 作用:据切线长及其它性质,可得到 ①角、线段的等量关系 ②垂直关系 ③全等、相似三角形 8.遇到三角形的内切圆时 连结内心到各三角形顶点,或过内心作三角形各边的垂线段 作用:利用内心的性质,可得 ①内心到三角形三个顶点的连线是三角形的角平分线 ②内心到三角形三条边的距离相等 9.遇到三角形的外接圆时,连结外心和各顶点 作用:外心到三角形各顶点的距离相等 (责任编辑:admin) |