初一数学是整个数学的基础,一定要扎实把握,小编整理了一些初一数学的重要知识点。 ![]() 正数和负数的概念 1、负数:比0小的数正数:比0大的数0既不是正数,也不是负数。 注意: ①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2、具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。 比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃ 3、0表示的意义 (1)0表示“没有”,如教室里有0个人,就是说教室里没有人。 (2)0是正数和负数的分界线,0既不是正数,也不是负数。 (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。 数轴 1、数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。 注意: (1)数轴是一条向两端无限延伸的直线; (2)原点、正方向、单位长度是数轴的三要素,三者缺一不。 2、数轴上的点与有理数的关系 (1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 (2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)。 3.利用数轴表示两数大小 (1)在数轴上数的大小比较,右边的数总比左边的数大; (2)正数都大于0,负数都小于0,正数大于负数; (3)两个负数比较,距离原点远的数比距离原点近的数小。 相反数 1、基本概念 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意: (1)相反数是成对出现的; (2)相反数只有符号不同,若一个为正,则另一个为负; (3)0的相反数是它本身;相反数为本身的数是0。 2、相反数的性质与判定 (1)任何数都有相反数,且只有一个; (2)0的相反数是0; (3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0。 3、相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。 以上是小编整理的初一数学知识点,希望能帮到你。 (责任编辑:admin) |